A functional identity involving elliptic integrals
نویسندگان
چکیده
منابع مشابه
Integrals involving complete elliptic integrals
We give a closed-form evaluation of a number of Erd elyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3F2 generalized hypergeometric function. Reduction formulae for 3F2 enable us to simplify the solutions for a number of particular cases. c © 1999 Elsevier Science B.V. All rights reserved.
متن کاملSome Integrals Involving Bessel Functions Some Integrals Involving Bessel Functions
A number of new definite integrals involving Bessel functions are presented. These have been derived by finding new integral representations for the product of two Bessel functions of different order and argument in terms of the generalized hypergeometric function with subsequent reduction to special cases. Connection is made with Weber's second exponential integral and Laplace transforms of pr...
متن کاملRecurrences for elliptic hypergeometric integrals
In recent work on multivariate elliptic hypergeometric integrals, the author generalized a conjectural integral formula of van Diejen and Spiridonov to a ten parameter integral provably invariant under an action of the Weyl group E7. In the present note, we consider the action of the affine Weyl group, or more precisely, the recurrences satisfied by special cases of the integral. These are of t...
متن کاملLimits of elliptic hypergeometric integrals
In [16], the author proved a number of multivariate elliptic hypergeometric integrals. The purpose of the present note is to explore more carefully the various limiting cases (hyperbolic, trigonometric, rational, and classical) that exist. In particular, we show (using some new estimates of generalized gamma functions) that the hyperbolic integrals (previously treated as purely formal limits) a...
متن کاملTransformations of hypergeometric elliptic integrals
The paper classifies algebraic transformations of Gauss hypergeometric functions with the local exponent differences (1/2, 1/4, 1/4), (1/2, 1/3, 1/6) and (1/3, 1/3, 1/3). These form a special class of algebraic transformations of Gauss hypergeometric functions, of arbitrary high degree. The Gauss hypergeometric functions can be identified as elliptic integrals on the genus 1 curves y = x − x or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Ramanujan Journal
سال: 2017
ISSN: 1382-4090,1572-9303
DOI: 10.1007/s11139-017-9915-4